
T H E
E V O L U T I O N O F
A P P L I C A T I O N

S E C U R I T Y (A N D
W H E R E W E G O

N E X T)

A P P L I C A T I O N D E V E L O P M E N T I S G O I N G

T H R O U G H A R E N A I S S A N C E . A R E Y O U R

S E C U R I T Y T O O L S P R E P A R E D F O R T H E

F U T U R E ?

Doc ver: 2021-01-20-01

It’s been growing over the past

several years and now has grown

large enough that it can’t be

ignored. The world of APIs is upon

us.

An Application Programming

Interface, or API, is a set of

functions allowing software

programs to access and interact

with the data and features of an

application.

APIs break application functionality

apart into discrete units that can be

called independently of each other.

THE APPLICATION RENAISSANCE HAS
BEGUN

For example, a shopping cart can call

an API to gather tax information for a

specific state. Another API call is

used to calculate postage or apply a

discount. The calling application can

choose which features to use and in

what order to use them.

But along with changing application

development standards come

changes in how to secure them. In

this paper, we’ll delve into how the

changing face of software

development leads to sweeping

changes in the application security

landscape. We’ll also discuss what

application security looks like in the

new world of APIs.

Software development standards

have changed dramatically over the

last decade. Long delivery cycles

and large applications are no longer

the norm.

Traditional web applications once

consisted of large, monolithic

chunks of code. They were

deployed all at once after a long

development cycle. Project

management at the time started

with all of the requirements upfront,

spent several months (or even

years) building the application to

match said requirements, and then

deploying everything at once.

However, those in the industry

began to notice that software

always seemed behind. What was

delivered was likely going to be

wrong in some major way.

Sometimes entire applications or

large pieces of them turned out to

be expensive mistakes.

THE CURRENT STATE OF APPLICATION

DEVELOPMENT This realization gave way to more

agile methods of software

development, such as Kanban and

Scrum. These methods focused on

completing and delivering small

pieces of software more frequently.

Then users can give feedback and

the development team can respond

to the feedback and update the code.

Instead of assuming you know all

requirements upfront, you discover

the requirements through use.

Lean methodologies take this

philosophy a step further. When

building new applications, you

develop the minimum viable product,

or MVP, and deliver it. It’s enough to

be valuable but doesn’t have

everything a user may want on day

one. Over time, the application is

expanded and changed based on

feedback from users. This approach

validates the software while it is built.

Changes in thinking about the right way to deliver software ran into an obstacle with

existing development practices. Most application frameworks were built with the

monolithic architecture in mind. Making a change to one piece of the code by itself

was much too expensive to do frequently. This challenge led to companies trying to

batch as many changes as possible into each release because each release was so

difficult and expensive.

New technologies and architectures were needed to match the fast pace of business

change and new agile methodologies. The introduction of API-first, cloud-native

applications changed how application developers created code forever. Small

microservices loosely coupled together gives developers ultimate flexibility.

For example, the below diagram shows a map of microservices at Uber. The pink

arrows show a possible path a request to the application may take to gather the

necessary information for the user.

This style of application architecture is not only used by trendy Silicon Valley

“unicorns.” Government institutions, financial services companies, legacy retailers and

non-profit organizations are beginning to develop using microservices. Many are

migrating existing applications into microservices over time to take advantage of the

many benefits.

Benefits of microservices include:

Scalability. New containers and service instances can be created dynamically during

peak times and then taken down when the extra muscle is no longer necessary.

Technology agnostic. Loose coupling and standard interfaces between microservices

mean each team builds their service using the best language for the use case.

Speed of development. Small code bases and a focused “do one thing well”

philosophy means changes are fast and efficient. Many companies deploy to production

several times a day.

Agile and DevOps movements have driven applications to focus on small pieces and

APIs. But along with new ways of developing applications have come new security

challenges.

What has security done to keep up with developers?

But physical servers aren’t the only

infrastructure under attack. Your software is

under attack, too. Firewalls stop traffic based

on IP addresses, so an attack that is sent

through HTTP port 80 (or HTTPS port 443)

will be allowed through. Without these ports

open, you might as well close up shop,

because legitimate traffic won’t be allowed

through either.

Something else was needed to protect web

applications when attacks began to be

launched through legitimate channels.

The traditional security model is a

“moat around the castle” approach.

Build barriers around your network

and keep the bad guys out.

Hardware firewalls and physical

security measures are put in place

to protect servers. Physical access

to servers is closely monitored.

Traffic coming into the network is

vetted before being allowed to

connect.

THE EVOLUTION OF APPLICATION

SECURITY

As the world became increasingly dependent on

web applications for doing business, attacks

against web applications became the focus of

application security.

Web Application Firewalls (WAFs) take the idea

of network firewalls and wrap it around a web

application. Network firewalls keep out known

bad traffic and only let in safe traffic. WAFs

prevent attacks by looking for signatures of

known attacks and only allowing safe traffic

through to the application.

WAFs changed the game by focusing on

application vulnerabilities. A legitimate call to

port 443 of a web application could contain an

SQL injection attack. A hardware firewall would

let it pass through. The WAF will stop it before it

reaches the application and causes a data

breach.

WAFS - BUT STATIC RULES FALL SHORT

A typical architecture with a firewall
for network security and a WAF for

application security

WAFs are an important part of application

security. But there are limitations to static

rule-based protection. Rule-based

security is inherently behind current state

attacks. An attack has to happen for a rule

or signature to be created. If a novel

attack occurs, someone has to pay the

price and get hit before that attack can be

stopped the next time. WAFs stop well-

known attacks but keep you playing catch

up. The next step in application security

technology tried to fix the static rule

problem.

Next Generation WAFs (NG-WAFs) do

the same work as traditional WAFs but

with extra features added to help

secure modern applications. Machine

learning and behavior analysis are

added to the signatures to provide a

more complete defense. NG-WAFs

promise to detect anomalous behavior

and stop it before the attack succeeds.

An increased cost to attackers.

Attackers try to take over anything with

an internet connection (DVRs, camera,

smart light bulbs, etc) and use them as

an army of “bots” to attack systems and

cover their tracks. NG-WAFs increase

the cost of these attacks and deter

script kiddies by correlating these

attacks with known patterns and

stopping them.

THE PROBLEMS THAT NG-WAF WON'T SOLVE

 Layered protection. NG-WAFs embrace the

“Defense In-depth” philosophy and protect

at multiple levels of your infrastructure.

They protect the perimeter and embed

themselves alongside your applications.

Automated Policy Learning. NG-WAFs use

machine learning and behavioral analytics

to understand attackers from a broader

perspective. They can automatically disable

signatures that would otherwise trigger

false positives and update application

policies automatically.

Virtual Patching. Not all vulnerabilities will

be fixed quickly. Some may not be fixed at

all. Some NG-WAFs support virtual patching

to prevent vulnerability exploitation until a

code fix is made available.

Cloud-Native Support. NG-WAFs support

deployment in a public, private, or hybrid

cloud. They can use containers to scale and

distribute nodes around the world to reduce

latency.

These are all valuable advances in application security. But NG-WAFs have failed to

solve the following problems.

API sprawl can lead to holes. As applications grow in complexity and the number of

APIs exposed, the attack surface grows, too. When the application becomes

complex, it may require you to disable defenses that produce a higher rate of false

positives. Determined attackers can find these holes and exploit them.

Use case exploitation. Application context varies greatly. Harmful requests for one

application could be normal traffic for another. NG-WAFs can’t detect the business

use case. The attacks remain hidden within normal traffic patterns. Attackers may be

able to tune themselves to the business traffic to bypass the NG-WAFs and remain

undetected for long periods of time. Unfortunately, turning up detection then

increases false positives and false negatives.

Focus on external traffic leaves internal actors undetected. NG-WAFs started as

traditional WAFs and have inherited the “perimeter defense” model. They focus on

attacks originating from outside the network. Insider attacks may go undetected.

Monitoring blind spots. As applications become more distributed, you no longer

have visibility into what is happening across the system. Monolithic applications

stored their logs in one place. On the other hand, each microservice has its own

monitoring and logging capabilities. Monitoring each service individually isn’t a

problem, but learning global system behavior is. Blind spots within the interaction

between services could develop due to data processing limitations imposed by most

NG-WAFs.

The next big step in application security

is Real-Time Application Self-Protection,

or RASP. With RASPs, security moves

into the code by linking into the

application and/or the runtime

environment. They can control

execution and detect and prevent real-

time attacks.

RASPs attempt to fill the gaps left by

perimeter-focused solutions like WAFs.

They watch the application execute and

detect attacks as they happen within

the executing code. RASPs have several

advantages over other security

solutions:

Watches rather than predicts. RASP

watches the application execute and

alerts when it sees actions performed. If

a RASP alerts you that an unexpected

shell command was executed, it means

a real attack occurred.

RASP - BUT PATTERNS ARE MISLEADING

 Better SDLC integration. RASP tools

integrate well with the software

development lifecycle. Feedback from

attacks observed in production can be used

by the development team to fix the

vulnerabilities attackers are trying to

exploit. This model fits well with the “rapid

feedback” philosophy of agile development

and DevOps.

Deployment agnostic. RASP solutions

implant sensors in the existing application

code, essentially becoming part of the

application. They may not even require

network calls to work. This design makes

them agnostic to deployment architecture,

so they’ll work in any combination of cloud,

on-prem, and container-based

architectures.

Virtual patching buys you time. RASP

protects your application from attacks in

real-time. It features the same virtual

patching capabilities as NG-WAFs. Due to

this protection, development teams have

time to develop sound fixes to

vulnerabilities without going into crisis

mode.

RASP has many benefits. However,

there are areas where RASP falls short.

Confined context. No application is

self-contained. RASP is tied directly to

the code it’s protecting. RASP’s visibility

is limited when it has to be deployed

with small microservices at different

endpoints. Attacks against that endpoint

will be stopped, but can it detect

actions across hundreds of services at

once?

Use case abuse. Business logic attacks

remain some of the most insidious

attacks against modern applications.

Broken Object Level Authentication

(BOLA) is an example of a business

logic attack RASP is likely to miss. BOLA

occurs when an attacker substitutes the

resource ID in an API call with the

resource ID of another user.

For example, an API that returns

medical records uses a number

sequence for IDs. An attacker looks at

the ID in the URI and increments it by

one (i.e. 123435 becomes 12346).

The lack of proper authorization checks

allows the attacker to see someone else’s

medical record. Since the input is

consistent with what the application

expects, RASP will let it pass through. An

understanding of the larger business

context is required to detect this type of

vulnerability or attack.

Perimeter and global attacks missed. RASP

only sees the current application context.

Large-scale assaults such as Distributed

Denial of Service attacks by armies of bots

cannot be effectively solved by RASP.

You’ll still require a perimeter defense

solution.

Deployment challenges. RASP solutions

have to be deployed along with the

application. When dealing with

microservices, you’ll have to deploy the

RASP along with each instance of the

service. Some organizations may view this

deployment model as intrusive and may not

feel comfortable deploying it for critical

applications. Add to that the dedicated

effort required to deploy, manage, and

update RASP components at every

endpoint, and deployment becomes

expensive.

Unintended consequences. The way RASP works could lead to unintended

consequences. For example, defeating an attack could require the rewriting of your

software’s execution at the last minute. Incident response and support could be

affected as the application might change its behavior on the fly.

A second unintended consequence is unexpected downtime due to interference

with the running code and false positives. RASP doesn’t learn the business context,

so it may predict that a valid use case is an attack and stop it. Guess what? Your

security solution just performed a Denial of Service attack against the application

it’s trying to protect.

Application security has seen several new approaches appear on the scene.

Traceable believes it has discovered the way to take the best features of these

solutions and upgrade them for use on modern cloud-native applications.

A holistic approach to protecting microservices, APIs, and cloud-native

architectures requires you to address three essential areas: API discovery and

risk management, application protection, and data privacy and compliance. Let’s

break these down one at a time and discuss how Traceable solves each concern.

 HOW TO PROTECT MODERN APPLICATION

ARCHITECTURES

API Discovery and Risk Management

The Problem:
API proliferation is a common occurrence in microservice architecture.

Changes to the APIs, as well as the connections between them, are

uncontrollable, unpredictable, and unplanned leading to unexpected risks

and vulnerabilities. Many security departments struggle to proactively

identify and address risks within their microservice applications.

 Constant changes to APIs create a risk of falling out of compliance and

becoming subject to fines or other adverse consequences. It’s also

difficult to keep tabs on sensitive data flowing between microservices in

API calls, exposing security leaders to further regulatory risk.

The Solution:
Security teams need to understand all of their API risks, where

vulnerabilities are hiding, and where they might be out of compliance.

They also need to learn about all changes to APIs and the potentially

sensitive data that flows between them. Tracking data flow shows where

sensitive data is at risk.

Continuous API Inventory and Change Detection

Dynamically discover all external and internal APIs. No more

shadow APIs.

Detect and get alerted on new and changed APIs.

API Risk Scoring in production & pre-production

Score each API by risk factors – authentication, authorization,

sensitive data etc.

Integrate with your CI/CD pipelines to understand risk of API

changes before they go into production.

Spec Conformance Analysis

Flag APIs that don't match developer specifications

(OpenAPI/Swagger)

API User Analytics

Monitor API users – call volume, error rates, geographies, user

profiles, etc.

As part of a solution, the requirements are as follows:

Organizations spend lots of time and manual effort to keep up with the

changes in their applications. Microservices pop up or are changed daily

with little visibility into changes as a whole. Companies feel like they’re

flying blind.

Organizations need to efficiently and effectively assess and manage the

security posture of their applications and APIs. They need visibility into

their APIs so that they can proactively address security concerns, quickly

respond to compliance requests, have complete information about the

location of key sensitive information in their applications, and

automatically produce API documentation that developers and security

engineers can rely on.

How Traceable AI Helps:

Traceable AI gives your teams and you insight into your current

Application and API Security Posture discovering and then continuously

observing the "DNA" of your application and associated APIs.

Every application has a unique Application DNA, which describes the

unique characteristics and markers of the application and it’s behaviors.

At the application level the DNA is the unique combination of services

and associated data that the application manages. At the microservice

level, the microservice DNA defines how the microservice interacts with

other services. At the communications level the API DNA describes the

behavior of the communications between the various components of the

application. Through understanding the different DNAs of the application,

traceable is able to give teams real-time visibility and insight into the

security posture and health of their application.

Complete visibility and risk management of all APIs

Automated discovery, inventory and classification of all APIs used by your applications including

shadow APIs

How many APIs do you have?

Which are Internal vs. External

What applications do you have and what services and APIs implement those applications?

Which of those applications & APIs are critical to your internal and customer-facing business

functions or can significantly disrupt the business if compromised?

Up to date state of your API usage, and changes across all your apps

Where are these APIs called from?

Who invokes these APIs, locations, protocols?

What is the frequency of these calls?

Do the call patterns align with the developer's expectations?

Do the actual APIs and functions match in specification with what has been documented,

reviewed and approved?

When an API changes, are the changes appropriately noted, reviewed, documented and risks

mitigated?

Identify your API vulnerabilities

Which ones have potential security issues?

Which ones are more likely to get attacked?

Which ones have sensitive data flowing through them?

Abuse of APIs identified and blocked before it can cause damage to your business.

Traceable Provides

Application Protection

Protection at the edge similar to an NG-WAF

An intelligent and adaptable system where threats are detected and

blocked, similar to a RASP

Protection between microservices where threats hide between your

microservices.

The ability to understand and detect business logic attacks

Fraud Prevention

BOLA prevention and other vulnerabilities from the OWASP API

Top 10

Authentication and authorization vulnerabilities

Protection from future attacks through insight and research (user

behavior)

Root cause analysis

Understand user behavior throughout the application

Threat hunting

The ability to meet PCI compliance requirements around app security

The Problem:
Protecting modern applications is challenging. These new applications

are increasingly complex, built in the cloud from dozens of microservices,

and connecting to users on the web and mobile devices. Each level of

complexity is a new threat vector.

Additionally, attacks are becoming more sophisticated and even harder

to mitigate. Traditional web/application firewalls are no longer able to

detect and prevent new threats. Companies need to be able to detect

and prevent threats in modern applications, but the current tools and

processes simply can’t keep up with the challenge.

The Solution:

These abilities increase confidence that threats to modern applications

are detected and blocked. A complete understanding of how modern

applications function and how to defend them keeps your company out

of the headlines. Defense at the perimeter and within the application

protects against every avenue an attacker may use to steal valuable data

or shut down your APIs.

In addition, costs are reduced by deploying a single solution that gives

you the protection of NG-WAFs and RASP while adding a holistic view

and understanding of your business logic. More attacks are stopped

before they cause damage and the right vulnerabilities can be fixed

quickly.

How Traceable Helps:

Rather than depending only on fragile rules to protect an application,

Traceable understands your application’s DNA to detect and prevent

threats originating both inside and outside your application. Traceable

understands the API level interactions between microservices both public

and private and is able to discover anomalies that can be tracked and

blocked.

Based on distributed tracing and observability using micro-agents,

Traceable has the ability to trace an individual application request from

the user at the edge, to the data source and back, across multiple

external APIs, internal APIs, and microservices.

Traceable then automatically builds an API inventory, specs, learns

expected behavior, and builds up to date awareness of fast-paced and

dynamically changing APIs. Leveraging unstructured machine learning,

Traceable then detects anomalies in your application which are potential

threats.

The below diagram shows a user behavior mapping for an API endpoint. The red

services and path show where an attack took place. This attack was prevented, but now

analysts know from where it originated and what services to inspect for code

vulnerabilities. This level of visibility doesn’t exist in RASP or NG-WAF solutions. You’ll

understand your application better than ever before and be able to find weak spots and

fix them.

Detect and block web application attacks similar to a traditional WAF

But without the requirement to tune and maintain rules

Detect and block OWASP Top 10 attacks, such as

Injection

XML external entities (XXE)

Cross-site scripting (XXS)

Fewer false positives through continuous unstructured machine learning

Detect and block API and business logic based attacks that traditional WAFs cannot

By understanding the flow of transactions through the application from edge to data and

back.

Advanced attacks stealing data by manipulating business logic (focused on fraud)

OWASP API Top 10 attacks such as

Mass Assignment

Broken Function Level Authorization

Broken Object Level Authorization

Excessive Data Exposure

Detect and block unknown/unexpected attacks by understanding the baseline API and user

behavior and continuously watching for and flagging anomalies.

Map the current state of application DNA understanding the inventory and structure of

microservices and associated APIs to understand App Security posture.

Easy to leverage data captured through Traceable to help meet PCI compliance requirements

Traceable Provides

Data Privacy and Compliance

The Problem:
The proliferation of cloud services and cloud-native applications has

created unique data privacy and compliance challenges. Critical business

data increasingly flows between microservices where APIs may or may

not consistently secure and protect the data. This presents very real

challenges for IT leaders who are responsible to ensure their systems

are compliant and that their controls effectively manage and protect

business and privacy related data.

Leaders face exposure to fines and sanctions if they are unable to secure

and protect their customer’s data. Furthermore, they need to be able to

keep up with the rapidly accelerating pace of change in their applications

and ensure that their processes and practices are compliant with their

controls.

The Solution:
The solution is a system that understands the nature of the data flowing

between your microservices. You need to track changes that may impact

customer or business-sensitive data and know where sensitive data is

potentially at risk.

Data Privacy and Compliance

How Traceable Helps:
Traceable offers API Sensitive Data Detection. It automatically detects

incoming and outgoing sensitive data in all API calls. It then creates a

downstream data flow trace for all outgoing sensitive data from your

application to any backend or third-party system. It then creates data

flow maps to show how data flows between microservices.

Traceable helps you visualize data in motion. You’ll see where sensitive

data is stored, how it’s being used, and how it moves throughout the

application. You’ll see what services touch sensitive data throughout the

lifecycle of a request so you can make sure those services are compliant

with standards and regulations.

Data classification becomes easier as Traceable tags sensitive data as it

sees it move through the application. Any classifications you missed in

the planning stages of the API can be found and corrected. The data flow

created also assists in auditing and fraud detection by building a

comprehensive map of all data moving through the application and

analysis of previous requests.

Step Into the Future of Application Security with

Traceable

Security tools must continue to change along with applications they

protect. The tools we discussed here such as NG-WAFs and RASP are

not “wrong” or “bad” tools. They developed in response to shifts in how

applications were made.

However, a new shift has occurred within the industry, one that hasn’t

been addressed fully by the tools available today. Cloud-native,

distributed, and API-based applications create new risks and new

opportunities for attackers to steal data and attack your system.

Traceable is the next step in application security. It meets the challenges

met by cloud-native applications today. Increased visibility, the ability to

stop business logic attacks (internally and at the perimeter) in their

tracks, and a data flow map to protect against compliance risk all meet

the needs of modern application architecture.

If you’re interested in seeing what Traceable can do for you, check out a

demo of how it works on Traceable’s website.

https://www.traceable.ai/view-traceable-demo?utm_source=traceable&utm_medium=whitepaper&utm_term=what-missing-app-sec&utm_content=whitepaper-cta&utm_campaign=traceable-demo

