

API and Modern Application Security
A Traceable Whitepaper

Outline

I. Introduction
II. Traditional vs Modern Application Architecture

A. Traditional
B. Modern: Microservices / APIs / Cloud

III. Overview of Traditional Application Security
IV. Requirements for Modern Application Security
V. Conclusion

1

[I] Introduction

Over the last 15 years, businesses have been rapidly adopting modern application
architectures and operational practices for developing and managing software. The
term cloud-native has been widely adopted in the industry as an umbrella category
that encapsulates many of these new technologies and processes. While not
exhaustive, the most significant aspects of cloud-native include:

● Cloud infrastructure (e.g. Amazon Web Services, Microsoft Azure, Google
Public Cloud)

● Containerization (e.g. Docker)
● Automation of deployment and scaling (e.g. Kubernetes)
● Microservices
● APIs
● DevOps
● Continuous integration, deployment, and delivery

With change comes great opportunity not just for your business but also for
cybercriminals. Security technology and operational practices have not been able to
keep pace with these changes, leaving applications and businesses vulnerable to
attack. Attackers have innovated and found new methods to infiltrate applications
to take over accounts, access private data, and cause businesses to lose the trust of
their customers.

The focus of this paper is to highlight how application security systems and
processes must evolve to protect and monitor production cloud-native applications.
Application security testing, code-analysis, and other pre-production techniques are
not discussed. To fully understand modern application security requirements, we’ll
begin by discussing how application architectures have evolved and highlight the
key differences between traditional 3-tier and modern microservices architectures.
We’ll then review the state of traditional application security, followed by a
thorough analysis of modern application security requirements.

[II] Traditional vs. Modern Applications

Before we discuss the requirements for securing modern applications, we first need
to understand what constitutes a modern application and how traditional
architectures have evolved to become ‘modern’.

2

Traditional Application Overview

Let’s start with a quick refresher on the “traditional” application architecture so
we’re all on the same page. There was hardware. Servers with operating systems
and software running on them and networking gear and storage. This was all
hosted in a private or co-located data center. Applications generally consisted of:

1. Clients​ were web browsers presenting the user interface through HTML with
modest use of JavaScript.

2. Application and web servers​, typically behind a load balancer, received
client requests, ran server-side code, interacted with a relational database
(hopefully running on a different server), and returned the HTML to the client.

3. Database servers​ stored the application data and responded to queries from
the application server.

Traditional applications were monolithic, which simply means that all of the
server-side code was organized in a single, self-contained application. A firewall was
deployed in front of the web server. The client was almost always a web browser.
SOAP was the standard protocol for exchanging data between applications.

Modern Application Overview

Fast forward to today and we’ve got, what at present time is referred to as ‘modern’,
cloud-native application architectures. As the term cloud-native would suggest,
modern applications run in the cloud. Firewalls still exist and virtual private clouds
provide a level of isolation to make running applications in multi-tenant public
clouds safer.

Microservices have made monolithic applications obsolete. A modern application is
the combination of multiple, often hundreds or thousands, of microservices. Each
microservice typically has a very specific and narrowly scoped job. Microservices
access data from various datastores and communicate with other internal
microservices and 3rd party services using REST APIs including JSON, GraphQL, etc.

Microservices are deployed in software packages called containers that, using
operating system-level virtualization, include all of the necessary software and
configuration files needed to run the microservice application code. Kubernetes
and other container-orchestration systems are used to manage and automate the
deployment and scaling of containers.

Browsers are still a popular client but modern applications also serve IOT, native
apps, other internal microservices, and 3rd party services.

3

Modern Application Architecture Summary

● The Cloud: ​Modern applications live “in the cloud”. Cloud providers offer
different levels of abstractions (IaaS, PaaS, SaaS) but long story short, these
apps run in the cloud.

● Microservices: ​Large applications are broken down into smaller components
or services.

● Business Logic is Highly Distributed: ​Applications are decentralized with
business logic spread across services.

● Deployment Orchestration: ​Containers and Kubernetes (K8S) make it easier
to connect and manage large numbers of microservices.

● Continuous Integration / Continuous Delivery (CI/CD): ​Software teams
develop features using agile methodologies and continuously deliver new
code to production.

● DevOps: ​Developers and technical operations work together to manage and
operate the application and development toolchain.

● Data Volumes: ​There’s no shortage of useful data these days and it comes in
many shapes and sizes that require more databases than your standard
RDBMS (sorry Oracle).

● Cloud / 3rd Party Services:​ Not all application functionality needs to be
created in-house. Most apps integrate 3rd party services, using APIs, to beef
up application functionality without reinventing the wheel.

Clients have differences too!

● Devices became more powerful: ​When I was a kid, iPhones only had 1
camera! What a time.

● Client Varietals: ​Today there are more types of clients - from traditional web
browsers to native mobile apps to (purposely) exposing your own APIs to
other developers.

● Client Muscle: ​Modern frontend frameworks (Angular, React.js) allow
developers to write complex logic that runs efficiently in the client. Clients
now render visual components that used to render server-side.

● More Calls, More Parameters: ​Clients maintain user state locally and trigger
API calls when data or an action is needed. This is done at the component
level vs the page, so the number of calls is higher and the number of
parameters sent to the server is higher as well.

4

[III] Overview of Traditional Application Security

Securing traditional applications was, in comparison to modern applications,
relatively straightforward considering the more simplistic monolithic architecture.
That doesn’t mean preventing application attacks was easy or bulletproof. What it
does mean is that security teams were able to understand the application
components, how they interacted, and the expected ingress and egress traffic
patterns.

Security teams benefited greatly from the simplicity of the traditional application
architecture for a multitude of reasons. First, the clients were dumb. It was difficult
to garner a rich understanding of the application’s business logic from looking at
the HTML code parsed by your browser. Hackers could learn a little from the form
input fields and URL parameters, but typically not enough to reconstruct the
business logic. Second, there were fewer unique parts. Users accessed applications
almost exclusively through a web browser; native apps and IOT were not yet
mainstream. The monolithic application consolidated the code and business logic
into a single application; microservices were not yet widely adopted..

WAFs analyzed the traffic between the client and the application, blocking client
requests as dictated by a set of manually created rules. As you recall, clients were
browsers displaying HTML and executing limited JavaScript (compared to today)
and application servers simply returned HTML from the application server to the
browser. WAFs, therefore, didn’t have access to application code or business logic,
thus limiting the number of signals available to the security pros to distinguish
between safe and malicious users. Security teams had to choose between high
false-positive rates resulting in unhappy customers and high false-negative rates
resulting in uhappy Chief Security Officers.

Hackers were also limited by the simplicity of the traditional architecture, but
managed to find no shortage of opportunities to attack. Flaws in application design
such as improper handling of SQL injection or cross-site scripting (XSS) and poorly
implemented authentication, authorization, or session management systems
opened the doors for hackers to succeed in their mission. The application’s attack
surface also increased if data was exchanged with 3rd parties. By exposing the
application’s business logic, these primitive web services, like microservices today,
gave hackers more information to work with. Additionally, there are vulnerabilities
in authentication and authorization as 3rd parties required a different, more
complex set of permissions and access requirements.

5

[IV] Requirements for Modern Application Security

In the previous chapters, we developed an understanding of how application
architectures have evolved, compared the differences between traditional and
modern architectures, and summarized traditional application security. In this
chapter, we’ll describe the requirements for securing modern, cloud-native
applications, including the APIs that interface with client applications, other internal
APIs, and 3rd party services.

One of the biggest challenges in securing cloud-native applications and their APIs is
understanding application context at runtime to determine if client requests are
legitimate. Application context includes all of the activity that occurs when a client
session makes requests to the application. With traditional applications, the
business logic was well contained in the backend application code. With
cloud-native applications and APIs, the client connects to APIs and makes requests
to backend and 3rd party services to implement the business logic.

Take a typical consumer web application as an example. A user wanting to view
their stored billing address would visit the application’s “Manage Account” page.
This page includes, among other things, a module that displays the user’s billing
address. In a traditional application, the client requests the “Manage Account” page
from the application server. The backend code executes the business logic and
constructs the page, including the data for the billing address module, and returns
it to the browser as a full HTML page. Therefore, all of the business logic is hidden
from the client.

Conversely, with a cloud-native application, the client calls all of the individual
backend application services, including the service responsible for retrieving billing
address data. Each service returns the requested data in JSON format back to the
client. The client is then responsible for taking in the JSON and stitching together
the components in the resulting page or screen. ​Understanding application
context is a fundamental security requirement for cloud-native applications.​ If
the pattern of client API requests, subsequent internal API requests, and/or calls to
3rd party services is inconsistent with normal application behavior, then the user
may be malicious.

Monitoring and reacting to application context requires that your application’s
security system can understand expected, or normal, application behavior. Knowing
what is normal is not a trivial task. Most cloud-native applications have many
backend services and APIs, in some cases hundreds or even thousands. There are
usually multiple types of clients, browsers, mobile apps, admin tools, other services,
etc., that are customers of the backend services, each with different application
flows. Further, teams building and operating cloud-native applications are typically

6

practicing agile development and continuous delivery, making normal application
behavior fluid and dynamic. Expected application behavior evolves as rapidly as the
application evolves with code changes, updated APIs, and new services being
added to the application. ​These factors dictate that the second fundamental
security requirement for modern applications is the ability to continuously
learn the application’s expected behavior across client types and as
application components change. ​The system must then be able to compare
application behavior in real-time with the expected behavior to detect malicious
activity. The application security system, therefore, must include a method for
collecting real-user application activity and have an artificial intelligence
component that is capable of dynamically learning from this data and
distinguishing between expected and abnormal application activity.

The OWASP API Top Ten documents the most common attack vectors facing APIs
today, and includes:

1. Broken Object Level Authorization
2. Broken User Authentication
3. Excessive Data Exposure
4. Lack of Resources & Rate Limiting
5. Broken Function Level Authorization
6. Mass Assignment
7. Security Misconfiguration
8. Injection
9. Improper Assets Management
10. Insufficient Logging & Monitoring

While we won’t go into the details of these attack vectors in this paper, it is critical
to understand that they all take advantage of either flaws in the application code,
application configuration, or miscommunication or lack of communication
between development and security teams. ​The next requirement for securing
modern applications, as you may have guessed, is that these two teams work
closely together to protect applications from attack and to respond if and
when attacks do occur. ​DevSecOps is an industry movement that focuses on
addressing this need. Whether this movement will evolve, similar to DevOps, into a
formal job function is yet to be determined. Regardless, it is imperative that these
teams work together, use common tools, have clear communication protocols, and
share in the responsibility of keeping applications secure. One of the easiest and
most successful ways of accomplishing this tight coordination is to leverage tools
that provide capabilities for both security and software development professionals.
While not an exhaustive list, these tools should include:

7

● Application topology maps that automatically map production components
from the client all the way through to individual microservices, data stores,
and even 3rd party services

● API specifications produced from live production traffic to understand actual
usage compared to documented specifications

● The ability to track how data flows across various application components
● Understand application users and roles and the different API activity of users

with different roles and permissions.
● Consolidated forensic data from all application components with drill-down

reporting
● Integrations with cloud-native infrastructure, such as Kubernetes, Envoy,

Docker, etc. to orchestrate the security solution and automatically block
malicious users

● Lightweight agents or other data collection mechanisms to collect data from
production applications without introducing performance overhead

The final, and admittedly not new, requirement is high accuracy in detecting
malicious activity.​ While this isn’t a new requirement, it is a critical requirement
and requires a brief overview. Accuracy is typically measured in false-positive rates,
indicating the percentage of valid users that have been treated as malicious users
incorrectly. Successful application security has to find the right balance between
preventing malicious activity and delivering a high quality user experience.
Securing an application and having zero false-positives would be easy if every
request was reviewed manually. Of course, security teams don’t have the time and
more importantly our legitimate users don’t have the patience for that level of
inspection. Application security monitoring systems aim to automate this review
and can even automate blocking malicious users. Traditional security systems
depend on manually derived rules that are either too stringent and cause a bad
user experience or are too lenient and let malicious activity slip past their defenses.
Modern security solutions, likely using artificial intelligence techniques, must be
able to effectively prevent malicious activity without derailing user experience and
achieve a near zero false-positive rate.

To summarize, the critical requirements of modern application security include the
ability to:

● Continuously and automatically learn normal application behavior
● Track application context in real-time and distinguish legitimate and

malicious activity
● Automatically adapt to application changes, including code, API, and

configuration changes
● Bring software development and security teams together to protect

applications and coordinate responses to attacks

8

● Accurately protect applications without jeopardizing actual user experience

[V] ​Why Traceable?

Traceable(™) answers most of the requirements for a modern API and Application
security tool.

It has deployment options and data collection vehicles for anything presenting
application logic on layer 7, from legacy monolithic PHP applications to Kubernetes
instrumented with Istio service mesh. It is optimized for DevSecOps and provides a
platform for security pros to find anomalies and teach developers how to make use
of the tool themselves. It has a rich set of data and a powerful ML platform to learn
the developer’s intent, discover the APIs and other assets, and adapt to the
environment - all while improving the observability for human decision making. It
monitors both north-south and east-west APIs to provide as much zero-trust
information as the team can handle. It monitors the application logic, user, and data
behavior in context to become one of the best and most comprehensive application
security monitoring tools.

9

