
Striking a proper balance:
Why comprehensive API
security requires both
agentless and agent-
based data collection

Engineers have long-devised various ways to collect reams of data from across

their ever-expanding IT infrastructure operations. This treasure-trove of insights

– buried deep within systems and software – helps IT operators improve such

critical digital business requirements as network throughput, application

performance, and increasingly security.

Along a spectrum of data gathering options, agentless observability quickly

analyzes data from network traffic to create a simple-but-general picture of

events. Elsewhere on the spectrum, agents-based gathering methods have

evolved and matured to listen for and record deeper and wider to ascertain

more data-driven insights and analysis.

A similar spectrum of observability choices and trade-offs is playing out in the

application programming interface (API) security market. An assortment of

security tools and platforms rely on a variety of agentless and/or agent-based

detection and recording methods. On the one hand, agentless methods allow

a quick and simple start. On the other hand, agent-based methods satisfy a

growing roster of security requirements by deploying proven agents where

appropriate to improve security analysis depth and ultimately reduce time to

remediation.

https://www.traceable.ai/glossary

Traditional IT security infrastructure was built and optimized for older,

monolithic applications and on-premises data centers. Over the last decade,

enterprises have rushed to adopt development environments that split

functionality across a collection of smaller microservices often hosted in many

clouds or distributed data centers. This agility allows companies to build with

constellations of assembled services to rapidly create new business functions,

as well as to improve their services via rapid and iterative code changes across

separate teams of developers.

New threats
demand new tools

These different services and applications are often and increasingly

interconnected using APIs. The API-driven approach allows microservices to be

developed, scaled, and deployed independently, often using containers and

cloud-native services. The trade-off is that the expanding use of interconnected

web services protocols and integration methods has also created an

expanding array of API security risks. Furthermore, application security tools

and techniques that worked for older monolithic applications and systems do

not satisfy the extended enterprise security requirements of widely dispersed,

cloud-native API and microservices architectures.

https://www.traceable.ai/blog-post/6-new-requirements-for-securing-microservices-versus-monolithic-applications
https://www.traceable.ai/glossary
https://www.traceable.ai/glossary
https://www.traceable.ai/glossary

A new approach to security is clearly necessary to address the current and next

generation of vulnerabilities and attacks. The distributed nature of how today’s

applications operate alone demands new ways of tracking the services and

data they use and share. For example, the business logic once embedded in a

monolithic application is now strewn across hundreds – or possibly thousands

– of microservices. One software change in a single microservice can create a

vulnerability and expose the entire application to potential exploits. Critical API

vulnerabilities such as Broken Object Level Authorization (BOLA) and Mass

Assignment are challenging businesses and security teams to find better

defenses than traditional web security approaches.

Vulnerabilities creep
into distributed services

https://www.traceable.ai/glossary
https://www.traceable.ai/glossary
https://www.traceable.ai/glossary
https://www.traceable.ai/glossary

Modern API security tools take a different approach to understanding how

applications work and change over time. They construct a threat model

gathered from across the services that form the application to better

understand the vulnerabilities and business flaws that malicious

cybercriminals could exploit. These tools collect metadata from across the

communication flows and services to build a robust model for detecting new

API security vulnerabilities. These machine learning (ML) models can then learn

how the application “should” work and operate by normal users. Deviations

from normal baseline behavior can then be surfaced quickly and flagged as

malicious.

Different
approaches to
gather data

Agentless deployments

An agentless security approach gathers data without a service, daemon, or

process running within the application, application component, or

microservice. Agentless security deployments sit outside of the application and

reduce administrative overhead and cost. There are two flavors of agentless:

traffic mirroring (or just mirroring), and edge.

Mirroring

In the mirroring cases, agentless deployments involve configuring existing

cloud or Kubernetes infrastructure to mirror specific types of traffic to the API

security service for analysis. This approach is out of band of any API traffic,

which is considered safer since the API security tool is not in a position to

interfere with, alter, or slow down the application traffic.

https://www.traceable.ai/glossary
https://www.traceable.ai/blog-post/use-the-owasp-api-top-10-to-secure-your-apis
https://www.traceable.ai/glossary

Agentless mirroring options commonly support mirroring from cloud services

running on Google Cloud Platform, Microsoft Azure, and AWS cloud

infrastructures. Some agentless options work by configuring Kubernetes

DaemonSet mirroring to capture out-of-band traffic for any Kubernetes-

orchestrated app running on containers anywhere.

To optimize the collection of the mirrored traffic, agent traffic relays are

deployed outside of the application and operate on the mirrored copy of the

application traffic. Instead of deploying the agent within the application, the

customer can deploy a traffic relay in a separate virtual image that runs on the

same virtual private cloud (VPC).

An agentless mirroring approach tends to be easier to deploy and is a good

option for enterprises to kick-start their API security practice. It is easy to begin

since security teams do not need new permissions from the application

development team. The downside is that an agentless mirroring solution can

not provide a deep view into the internals of the application as it runs, meaning

the API security solution is operating with a reduced understanding of

application context.

https://docs.traceable.ai/docs/daemonset-mirroring

Additionally, the API security solution that relies on agentless cannot directly

block malicious traffic, since it is out-of-band, and the decisions are delayed

since the analysis is done outside of the path of the application. This universal

drawback is applicable to any software using a mirroring approach.

Edge

Some enterprises choose to adopt a hybrid approach in which components

are installed on infrastructure in the path of the traffic. This includes modules

installed on proxies, API gateways, Kubernetes service meshes, or Kubernetes

containers or pods. In this case, it is still technically agentless since no code is

installed on the application or service itself. This approach requires slightly

more collaboration with the operations team, but it can gather finer-grained

information and can directly block some malicious traffic that passes through

the infrastructure it is on, such as a proxy or gateway. However, it can not

directly block traffic between the services that sit behind the gateway (ie, east-

west traffic).

Agent-based deployments

Further along the API security data collection spectrum of choices is the agent-

based approach. It integrates agent code into the application runtime. Like the

software agents that have become a mainstay of application performance

monitoring tools for years, this approach provides a more granular view of API

traffic, data flows, and code paths.

https://en.wikipedia.org/wiki/Application_performance_management

In this deployment model, an agent (a small executable) sits within or

alongside applications that need to be secured. Such agent code inserts, for

example, into Java, Golang, Python, and Node.js. In addition, agent-based

deployments can support serverless installations on AWS Lambda serverless

cloud services built using languages such as Python and Node.js.

Regardless of the environment and deployment model, such agent-based

security solutions collect a plethora of granular data on many variables,

including the request/response full header and body payloads, performance

characteristics, infrastructure availability, resource consumption, and the

operating systems’ and applications’ behaviors.

https://www.traceable.ai/glossary
https://aws.amazon.com/lambda/

Agents and advantages

There are several advantages of the agent-based approach. One is that it can

provide deeper security analytics and protection by providing that rich bevy of

runtime data, payload, and user behavior over time. Agent-based solutions can

also intercept and block requests between services at wire speed, and – in

cases of encrypted traffic – can still detect issues because they sit outside of the

encryption path. An additional advantage of an agent-based approach is that

for Log4j- and Spring4shell-type attacks, where libraries being called have high

criticality recently known vulnerabilities, in-app agents provide surgically

precise protection by blocking API calls to the vulnerable libraries only and

exactly at the point in the app where they are being called from.

Upfront there may be the need for added effort with agents. Agent-based

approaches can require more coordination with different teams to properly

deploy the agents onto production systems. But while the agents do sit in-line

with the application, added latencies and additional risk from modern agents

have proven negligible when compared to the value of the extended security

data and insights gained.

Evolve to an
API security strategy
There are clear tradeoffs with implementing either agents or agentless

observability deployment options. These range from the ease of deployment

that enables quicker time-to-value with an agentless approach to a set of

powerful security capabilities when an organization fully implements an end-

to-end agent-based security solution.

The reality is that organizations should not and do not need to make such an

either-or decision.

https://www.traceable.ai/blog-post/instant-log4j-protection-shield-and-hunt-with-traceable-ai
https://www.traceable.ai/blog-post/shields-up-against-spring4shell-attacks-traceable-ai-quick-start-guide
https://www.traceable.ai/log4shell_quick_start_protection
https://www.traceable.ai/resources/lp/whitepaper-al-ml-differentiators

Traceable AI delivers a solution providing the most flexible deployment options

for both agentless and agent-based deployments. Organizations do not have

to choose one method over another, especially in order to gain highly capable

API security rapidly. Traceable AI offers agentless deployments using mirroring,

as well as across such edge options as API gateways, proxies, load balancers,

and Kubernetes meshes. Concurrently, Traceable delivers agent-based options

for Java, Python, GoLang, and Node.js, on both server and serverless

installations. And with the agent-based deployments, users gain advanced

security capabilities including end-to-end sensitive data flow analysis and user-

attributed, end-to-end cross-session activity tracing.

Every organization has a range of applications and security requirements – as

well as a variety of stakeholders – that evolve and come and go over time. A

common approach adopted by many organizations is to implement a quick-

time-to-value strategy through an agentless deployment, learning what

security features are available, and educating cross-functional teams on the

range of available security options and advantages for each deployment

option.

As various groups obtain value from an agentless deployment, they can begin

to explore deeper security capabilities that can be rolled out over time in

strategic steps. This approach helps security and development teams properly

prepare for in-app agents to obtain the capabilities, insights, and visibility not

available with an agentless only deployment. These choices can also grow and

adapt based on their cloud, hybrid, or on-premises deployment model

decisions for their various applications and data services.

https://www.traceable.ai/
https://www.traceable.ai/use-cases/api-discovery-and-risk-management
https://www.traceable.ai/glossary
https://www.traceable.ai/use-cases/application-protection
https://www.traceable.ai/resources/lp/guide-api-security-buyers

In conclusion, a spectrum of choices and trade-offs is playing out in the API

security space when it comes to how to gather and use data about apps,

systems, and services. The most important decision, at the end of the day, is on

how best to make APIs known, monitored, secure, and easy to remediate on an

ongoing basis. The choices about API security should not be made about the

agents’ requirements alone, but in the context of the end-to-end security

needs.

Establish priority
of security-first for
observability

https://www.traceable.ai/resources/lp/api-security-solution-comparison-guide

Traceable AI offers a full range of both agentless and agents-based

observability options to provide the best and broadest means to gather all the

data about APIs in production to protect them. The agents are the starting

point of a data-driven journey to assemble an API security baseline by which to

monitor, protect, and improve the full API ecosystem across their full lifecycle

for any business, for any IT environment.

Depending on your role and the needs at your organization, there are multiple

options to get started with Traceable AI and its many options for observability

and API security:

• If you’re a CISO or DevSecOps security leader and want to evaluate your API

security risks, try the API Security Posture Assessment.

• To start your journey, sign up for a Free Tier and learn all about your APIs —

internal, external, third-party, and even the shadow or rogue APIs you may

not even be aware of.

• If you want to compare different API security solutions in the market, check

out the API Security Tools comparison guide.

• You can also view a demo or book a meeting to learn more and ask your

questions on how Traceable can meet your API observability and security

requirements.

https://www.traceable.ai/product
https://www.traceable.ai/application-security-checkup
https://www.traceable.ai/free
https://www.traceable.ai/comparisons
https://www.traceable.ai/View-Traceable-Demo
https://www.traceable.ai/Book-Meeting

